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Abstract
In this report, we describe the solution we pro-1

pose for the AI Olympics competition held at IJCAI2

2023. Our solution is based on a recent Model-3

Based Reinforcement Learning algorithm named4

MC-PILCO. Besides briefly reviewing the algo-5

rithm, we discuss the most critical aspects of the6

MC-PILCO implementation in the environments at7

hand.8

1 Introduction9

In this short paper, we present the Reinforcement Learning10

(RL) [Sutton and Barto, 2018] approach we implemented to11

tackle the AI Olympics competition held at IJCAI 20231.12

Our algorithm, named Monte-Carlo Probabilistic Inference13

for Learning COntrol (MC-PILCO) [Amadio et al., 2022], is14

a Model-Based (MB) RL algorithm that proved remarkably15

data-efficient in several low-dimensional benchmarks, such16

as a cart-pole, a ball & plate, and a Furuta pendulum, both17

in simulation and real setups. MC-PILCO exploits data col-18

lected by interacting with the system to derive a model of the19

system dynamics, and optimizes the policy by simulating the20

system, rather than optimizing the policy directly on the ac-21

tual system. When considering physical systems, this kind of22

approach can be highly performing and more data-efficient23

than Model-Free (MF) solutions.24

This paper is organized as follows: Section 2 introduces the25

goal and the settings of the competition. Section 3 presents26

the MC-PILCO algorithm. Section 4 reports the experiments27

that have been performed, finally Section 5 concludes the pa-28

per.29

2 Goal of the competition30

The challenge considers a 2 degrees of freedom (dof) under-31

actuated pendulum [Wiebe et al., 2022; Wiebe et al., 2023]32

with two possible configurations. In the first configuration,33

also called Pendubot, the first joint, namely, the one attached34

to the base link is active, and the second is passive. Instead, in35

the second configuration, also named Acrobot, the first joint36

is passive and the second is actuated. For each configuration,37

1https://ijcai-23.dfki-bremen.de/competitions/ai olympics/

the competition’s goal is to derive a controller that performs 38

the swing-up and stabilization in the unstable equilibrium 39

point of the systems. Both robots are underactuated, which 40

makes the task particularly challenging from the control point 41

of view. The systems are simulated at 500Hz with a Runge- 42

Kutta 4 integrator for an horizon of T = 10 s. Controllers are 43

evaluated by a performance and a robustness score. 44

3 MC-PILCO for underactuated robotics 45

In the first part of this section we briefly review MC-PILCO, 46

then, in the second part, we discuss its application to the con- 47

sidered problem. 48

3.1 MC-PILCO review 49

MC-PILCO is a MB policy gradient algorithm, in which GPs 50

are used to estimate system dynamics and long-term state dis- 51

tributions are approximated with a particle-based method. 52

Consider a system with evolution described by the discrete- 53

time unknown transition function f : Rdx × Rdu → Rdx : 54

xt+1 = f(xt,ut) +wt, (1)

where xt ∈ Rdx and ut ∈ Rdu are respectively the state 55

and input of the system at step t, while wt is an indepen- 56

dent white noise describing uncertainty influencing the sys- 57

tem evolution. As usual in RL, a cost function c(xt) encodes 58

the task to be accomplished. A policy πθ : x → u that de- 59

pends on the parameters θ selects the inputs applied to the 60

system. The objective is to find policy parameters θ∗ that 61

minimize the cumulative expected cost, defined as follows, 62

J(θ) =

T∑
t=0

E[c(xt)], (2)

where the initial state x0 is sampled according to a given 63

probability p(x0). 64

MC-PILCO’s consists of the succession of several attempts 65

to solve the desired task, also called trials. Each trial consists 66

of three main phases: (i) model learning, (ii) policy update, 67

and (iii) policy execution. In the first trial, the GP model is 68

derived from data collected with an exploration policy, for 69

instance, a random exploration policy. 70

In the model learning step, previous experience is used to 71

build or update a model of the system dynamics. The policy 72
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update step formulates an optimization problem whose objec-73

tive is to minimize the cost in eq. (2) w.r.t. the parameters of74

the policy θ. Finally, in the last step, the current optimized75

policy is applied to the system and the collected samples are76

stored to update the model in the next trials.77

In the rest of this section, we give a brief overview of the78

main components of the algorithm and highlight their most79

relevant features.80

Model Learning81

MC-PILCO relies on GP Regression (GPR) to learn the sys-82

tem dynamics [Rasmussen, 2003]. In our previous work,83

[Amadio et al., 2022], we presented a framework specifically84

designed for mechanical systems, named speed-integration85

model. Given a mechanical system with d degrees of free-86

dom, the state is defined as xt = [qT
t , q̇

T
t ]

T where qt ∈ Rd87

and q̇t ∈ Rd are, respectively, the generalized positions and88

velocities of the system at time t. Let Ts be the sampling time89

and assume that accelerations between successive time steps90

are constant. The following equations describe the one-step-91

ahead evolution of the i-th degree of freedom,92

q̇
(i)
t+1 = q̇

(i)
t +∆

(i)
t (3a)

q
(i)
t+1 = q

(i)
t + Tsq̇

(i)
t +

Ts

2
∆

(i)
t (3b)

where ∆
(i)
t is the change in velocity. MC-PILCO estimates93

the unknown function ∆
(i)
t from collected data by means94

of GPR. Each ∆
(i)
t is modeled as an independent GP, de-95

noted f i, with input vector x̃t = [xT
t ,u

T
t ]

T , hereafter re-96

ferred as GP input. Given an input-output training dataset97

D(i) = {X̃,y(i)}, where the inputs are X̃ = [x̃T
1 , . . . , x̃

T
n ]

T ,98

and the outputs y(i) = [y
(i)
1 , . . . y

(i)
n ]T are measurements of99

∆
(i)
t at time instants t = 0, . . . , Ttr, GPR assumes the fol-100

lowing probabilistic model,101

y(i) = f i(X̃) + e, (4)

where vector e accounts for noise, defined a priori as zero102

mean independent Gaussian noise with variance σ2
i . The un-103

known function f i is defined a priori as a GP with mean104

m
(i)
∆ and covariance defined by a kernel function k(x̃ti , x̃tj ),105

namely, f i(X̃) ∼ N(m
(i)
∆ ,KX̃X̃), where the element of106

KX̃X̃ at row r and column j is E[∆
(i)
tr ,∆

(i)
tj ] = k(x̃tr , x̃tj ).107

The mean function m
(i)
∆ can be derived from prior knowledge108

of the system, or can be set as the null function if no informa-109

tion is available. Instead, as regards the kernel function, one110

typical choice to model continuous functions is the squared-111

exponential kernel:112

k(x̃ti , x̃tj ) := λ2e
−∥x̃ti

−x̃tj∥
2

Λ−1 (5)

where λ and Λ are trainable hyperparameters tunable by max-113

imizing the marginal likelihood (ML) of the training samples114

[Rasmussen, 2003].115

As explained in [Rasmussen, 2003], the posterior distribu-116

tions of each ∆
(i)
t given Di are Gaussian distributed, with117

mean and variance expressed as follows: 118

E[∆̂(i)
t ] = m

(i)
∆ (x̃t) +Kx̃tX̃

Γ−1
i (y(i) −m

(i)
∆ (X̃))

var[∆̂
(i)
t ] = ki(x̃t, x̃t)−Kx̃tX̃

Γ−1
i KX̃x̃t

Γi = KX̃X̃ + σ2
i I

(6)

Then, also the posterior distribution of the one-step ahead 119

transition model in (3) is Gaussian, namely, 120

p(xt+1|xt,ut,D) ∼ N (µt+1,Σt+1) (7)

with mean µt+1 and covariance Σt+1 derived combining (3) 121

and (6). 122

Policy Update 123

In the policy update phase, the policy is trained in order to 124

minimize the expected cumulative cost in eq. (2) with the 125

expectation computed w.r.t. the one-step ahead probabilistic 126

model in eq. (7). This requires the computation of long-term 127

distributions starting from the initial distribution p(x0) and 128

eq. (7), which is not possible in closed form. MC-PILCO 129

resorts to Monte Carlo sampling [Caflisch, 1998] to approx- 130

imate the expectation in eq. (2). The Monte Carlo procedure 131

starts by sampling from p(x0) a batch of N particles and sim- 132

ulates their evolution based on the one-step-ahead evolution 133

in eq. (7) and the current policy. Then, the expectations in 134

eq. (2) are approximated by the mean of the simulated parti- 135

cles costs, namely, 136

Ĵ(θ) =

T∑
t=0

(
1

N

N∑
n=1

c
(
x
(n)
t

))
(8)

where x
(n)
t is the state of the n-th particle at time t. 137

The optimization problem is interpreted as a stochastic gra- 138

dient descend problem (SGD) [Bottou, 2010], applying the 139

reparameterization trick to differentiate stochastic operations 140

[Kingma and Welling, 2013]. 141

The authors of [Amadio et al., 2022] proposed the use of 142

dropout [Srivastava et al., 2014] of the policy parameters θ to 143

improve exploration and increase the ability to escape from 144

local minima during policy optimization of MC-PILCO. 145

3.2 MC-PILCO for underactuated robotics 146

The task in object presents a number of practical issues when 147

applying the algorithm. The first one is that the control fre- 148

quency requested by the challenge is quite high for a MBRL 149

approach. Indeed, high control frequencies require a high 150

number of model evaluations which increases the computa- 151

tional cost of the algorithm. Generally, this class of systems 152

can be controlled at relatively low frequencies, for instance, 153

[Amadio et al., 2022] and [Amadio et al., 2023] derived a 154

MBRL controller for a Furuta Pendulum at 33Hz. However, 155

the physical properties of the simulated systems (no friction) 156

make the system particularly sensitive to the system input. 157

For these reasons, we selected a control frequency of 100Hz. 158

The second issue is that controllers are evaluated by a per- 159

formance and robustness score. In the robustness test, the 160

characteristics of the system and data acquisition vary. This 161



is an issue for data-driven solutions like MC-PILCO since re-162

training of the controller is not allowed. For this reason, we163

decided to focus only on the performance score, even if in164

our previous work we showed that MC-PILCO can be robust165

to noise and filtering by including these effects in the simula-166

tion.167

Since the nominal model of the system is available to de-168

velop the controller, we use the forward dynamics function of169

the plant as the prior mean function of the change in velocity170

for each joint. The available model is171

But = M(qt)q̈t + n(qt, q̇t), (9)

where M(qt) is the mass matrix, n(qt, q̇t) contains the172

Coriolis, gravitational and damping terms, and B is the ac-173

tuation matrix, which is B = diag([1, 0]) for the Pendubot174

and B = diag([0, 1]) for the Acrobot. We define then175

m∆(x̃t) =

[
m

(1)
∆

m
(2)
∆

]
:= Ts·M−1(qt)(But−n(qt, q̇t)) (10)

as the mean function in eq. (6). It is important to point out that176

eq. (10) is nearly perfect to approximate the system when Ts177

is sufficiently small, but it becomes unreliable as Ts grows. In178

particular, with Ts = 0.01 s the predictions of eq. (10) are not179

good enough to describe the behavior at the unstable equilib-180

rium. The inaccuracies of the prior mean are compensated by181

the GP models. To cope with the large computational burden182

due to the high number of collected samples, we implemented183

the GP approximation Subset of Regressors, see [Quiñonero-184

Candela and Rasmussen, 2005] for a detailed description.185

An important aspect of policy optimization is the particles186

initialization, in this case, it is guaranteed that the system will187

always start at x0 = 0̄, therefore the initial distribution can188

be set to p(x0) ∼ N (0̄, ϵI) with ϵ in the order of 10−4.189

The cost function must evaluate the policy performance
w.r.t. the task requirements, in this case, we want the system
to reach the position qG = [π, 0]T and stay there indefinitely.
A cost generally used in this kind of system is the saturated
distance from the target state:

cst(xt) = 1− e−∥qt−qG∥2
Σc Σc = diag

(
1

ℓc
,
1

ℓc

)
, (11)

with ℓc = 3. Notice that this cost does not depend on the190

velocity of the system, just on the distance from the goal state,191

but it does encourage the policy to reach the goal state with192

zero velocity.193

The policy function that is used to learn a control strategy194

is the general purpose policy from [Amadio et al., 2022]:195

πθ(xt) = uM tanh

(
Nb∑
i=1

wi

uM
e−∥ai−ϕ(xt)∥2

Σπ

)
ϕ(xt) = [q̇T

t , cos (q
T
t ), sin (q

T
t )]

T

(12)

with hyperparameters θ = {w, A,Σπ}, where w =196

[w1, . . . , wNb
]T and A = {a1, . . . ,aNb

} are, respectively,197

weights and centers of the Nb Gaussians basis functions,198

whose shapes are determined by Σπ . For both robots, the199

dimensions of the elements of the policy are: Σπ ∈ R6×6,200

Figure 1: Simulation of the Pendubot system (500Hz), under con-
trol of the policy trained with MC-PILCO.

Controller Perf. score Rob. score Avg. score

TVLQR 0.827 0.95 0.8885
MC-PILCO 0.891 0.871 0.881

iLQR MPC stab. 0.845 0.86 0.8525
iLQR Riccati 0.847 0.592 0.7195
iLQR MPC 0.861 0.2 0.5305
Energy PFL 0.594 0.117 0.3555

Table 1: Pendubot scores comparison.

ai ∈ R6, wi ∈ R for i = 1, . . . , Nb, since the policy outputs 201

a single scalar. In the experiments, the parameters are initial- 202

ized as follows. The basis weights are sampled uniformly in 203

[−uM , uM ], the centers are sampled uniformly in the image 204

of ϕ with q̇t ∈ [−2π, 2π] rad/s. The matrix Σπ is initialized 205

to the identity. Given the ideal conditions considered in this 206

simulation, for the purpose of the challenge we switched to an 207

LQR controller after swing-up. Under ideal circumstances, 208

the LQR controller has the capability to stabilize the system 209

at an unstable equilibrium by exerting zero final torque. 210

4 Experiments 211

In this section, we briefly discuss how the algorithm was ap- 212

plied to both systems and show the main results. We also re- 213

port the optimization parameters used for both systems, all 214

the parameters not specified are set to the values reported 215

in [Amadio et al., 2022]. All the code was implemented in 216

Python with the PyTorch [Paszke et al., 2017] library. 217

For both robots, we use the model described in Section 3.1, 218

with mean function from eq. (10) and kernel function from 219

eq. (5). The max torque uM was set to conservative values, to 220

optimize the score of the controller. The policy optimization 221

horizon was set much lower than the horizon required for the 222

competition, this allows to reduce the computational burden 223

of the algorithm, moreover, it pushes the optimization to find 224

policies that can execute a fast swing-up. We exploit dropout 225

in the policy optimization as a regularization strategy, to yield 226

better policies. 227

4.1 Pendubot 228

229

The policy for the Pendubot swing-up was optimized for a 230

horizon of T = 3.0 s, with uM set to 40% of the torque 231



Figure 2: Simulation of the Acrobot system (500Hz), under control
of the policy trained with MC-PILCO.

limit of the actuator. The sampling time for model and policy232

learning is 0.01 s, thus the control rate is 100Hz. The condi-233

tion for switching to the LQR stabilization is q1 > 3.1 rad.234

The Controller’s strategy is depicted in fig. 1, in fig. 3 (left)235

we report the robustness bar charts. This controller has a per-236

formance score of 0.891 and a robustness score of 0.852. In237

table 1 we compare our controller’s score with other tested238

control strategies.239

4.2 Acrobot240

The policy for the Pendubot swing-up was optimized for a241

horizon of T = 3.0 s, with uM set to 50% of the torque242

limit of the actuator. The sampling time for model and policy243

learning is 0.02 s, thus the control rate is 50Hz. The condi-244

tion for switching to the LQR stabilization is q1 > 2.8 rad.245

The Controller’s strategy is depicted in fig. 2, in fig. 3 (right)246

we report the robustness bar charts. This controller has a per-247

formance score of 0.869 and a robustness score of 0.73. In248

table 2 we compare our controller’s score with other tested249

control strategies.250

Controller Perf. score Rob. score Avg. score

TVLQR 0.783 0.861 0.822
MC-PILCO 0.869 0.634 0.7515

iLQR MPC stab. 0.806 0.685 0.7459
Energy PFL 0.728 0.503 0.6155

iLQR Riccati 0.831 0.298 0.5645
iLQR MPC 0.796 0.089 0.4425

Table 2: Acrobot scores comparison.

251

Figure 3: Pendubot (left) and Acrobot (right) robustness bar charts.

5 Conclusions 252

In both systems, our MBRL approach reaches a performance 253

score higher than other tested approaches, while remaining 254

competitive w.r.t. the robustness score. 255
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