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Abstract
DQN is classically known as a good controller1

for complex stochastic tasks with discrete action2

spaces. In this report, we investigate its ability to3

solve the Pendulum challenge pointing out some in-4

tuition on how to generalize this algorithm to con-5

tinuous action spaces.6

1 Introduction7

Reinforcement Learning has been shown to be effective in8

solving a wide variety of tasks [1; 2]. We use Deep-Q Net-9

work (DQN) [3] to overcome classical control approach limi-10

tations for this challenge [4]. We manage to make DQN learn11

a hand-crafted reward that leads to an interesting behavior.12

2 Method13

For this challenge, we used DQN to solve the Pendubot task14

[5]. DQN uses the theory of Reinforcement Learning. The15

idea is to learn an action-value function from which a greedy16

policy would yield the highest possible sum of discounted re-17

wards. To learn such a function, this method uses the optimal18

Bellman operator. This operator is a contracting mapping,19

meaning that the successive iterations of this operator lead to20

its fixed point. The theory guarantees that this fixed point is21

the optimal action-value function corresponding to the opti-22

mal policy i.e., the policy yielding maximum reward.23

DQN is known to work well on discrete action spaces.24

Since the action space of Pendubot is only in 1 dimension,25

we consider discretizing it into 9 actions. Choosing a log-26

arithmic discretization centered on zero yields better perfor-27

mances in practice. This behavior can be understood because28

a linear discretization does not leave enough variety to bal-29

ance the pendulum precisely when it is close to being upright.30

The proposed state space is composed of 4 dimensions. For31

the final submission, we used the environment settings of a32

competing team of Chi Zhang and Akhil Sathuluri, as their33

reward function yields better performances. For further de-34

tails, we refer to their submission. Similar to their approach,35

we employ the LQR controller provided by RealAIGym to36

stabilize the Pendubot when it enters the region of attraction.37

Algorithm 1 presents the pseudo-code of DQN. The hyper-38

parameters can be found in Table 1.39

Algorithm 1 DQN

1: Inputs: number of epochs N , training steps per epoch
n, online and target parameters θ = θ̄, replay buffer D,
gradient step frequency G, target update frequency T .

2: i← 0 ▷ number of overall training steps
3: for N epochs do
4: j ← 0 ▷ number of training steps within an epoch
5: s← env.init()
6: absorbing← false; sum reward← 0; n episodes← 0
7: while j < n and absorbing = false do
8: sample a ∼ ϵ-greedy Q(s, ·|θ)
9: (s′, r, absorbing)← env.step(a)

10: D ← D ∪ {(s, a, r, s′)}
11: s← s′; sum reward += r
12: if absorbing = true then
13: s← env.init()
14: n episodes += 1
15: end if
16: if i = 0[G] then
17: d ∼ U(D)
18: θ ← Adam update(L, d, θ, θ̄) ▷ L=TD-error
19: end if
20: if i = 0[T ] then
21: θ̄ ← θ
22: end if
23: i += 1; j += 1
24: end while
25: end for
26: return θ

3 Results 40

Figure 1 shows how DQN manages to balance the Pendubot 41

upright. Even if Pendubot reaches the goal under 3 seconds, 42

the actions taken by DQN are varying a lot over the trajec- 43

tory making it hard to transfer to the real system without 44

the risk of damaging the robot. Table 2 shows the different 45

scores that the challenge proposes to compute. The cost for 46

the torque smoothness is the highest of the competition. Fur- 47

ther investigation could be done to make the actions smoother 48

over time. We believe this behavior is coming from the choice 49

of the neural network architecture. The neural network takes 50

as input a state and outputs the action-value function estimate 51

for every possible action. This way the neural network does 52



Table 1: Summary of the hyperparameters.

γ 0.85
H 1000

# epochs N 200
# training steps per epochs n 25000

# initial samples in D 2000
replay buffer capacity 25000

gradient step frequency G 1
target update frequency T 100

starting ϵ 1
ending ϵ 0.01

ϵ linear decay duration 25000
batch size 64

learning rate 0.00001
architecture FC256, 256, 9

Table 2: RealAI scores.

Swingup Success 1/1
Swingup Time [s] 1.95

Energy [J] 14.44
Max. Torque [Nm] 5.0

Integrated Torque [Nms] 5.92
Torque Cost [N²m²] 25.44

Torque Smoothness [Nm] 1.452
Velocity Cost [m²/s²] 34.79

RealAI Score 0.815

not have a notion of distance between the actions. In con-53

trast, policy gradient methods are training a neural network54

that directly encodes the policy. By outputting the action to55

apply, the policy network has a notion of distance in the ac-56

tion space. DQN manages to find a policy having the lowest57

velocity cost of the competition (see Table 2 and the leader-58

board of the competition). Figure 2 shows the performances59

of DQN on the robustness scores. The results can be repro-60

duced in 5 hours on a regular CPU.61

4 Analysis62

We choose γ to be low (γ = 0.85) compared to usual ap-63

proaches. By reducing the discount factor, the agent focuses64

more on immediate reward, making the agent more willing65

to stay upright instead of waiting to reach the same state by66

Figure 1: Position, velocity, and torque with respect to time.

Figure 2: Robustness score. Overall Robustness Score: 0.226.

(a) γ = 0.95. (b) γ = 0.99.

Figure 3: Position, velocity, and torque with respect to time with
different γ. The X axis is in timestep. One timestep corresponds to
0.01 seconds, meaning 1000 timestep amounts to 10 seconds.

spinning. In Figure 3, we choose two different values for γ: 67

0.95 and 0.99. In Figure 3b where γ = 0.99, the agent makes 68

Pendubot spin as the values of q1 and q2 show. In Figure 3a 69

where γ = 0.95, the first link of Pendubot remains upright 70

and the agent tries to bring the second link upright as well. 71

5 Conclusion 72

For this challenge, we tried to use DQN to solve the Pen- 73

dubot task. At first sight, reinforcement learning seems to be 74

able to solve this task, but it might not be the best approach 75

since it requires a lot of reward and hyperparameter tuning. A 76

more reasonable direction would be to use residual learning 77

to learn how to compensate for disturbances with Reinforce- 78

ment Learning while using control theory as guidance. 79
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